История развития вычислительной техники до эры эвм. Краткая история развития компьютерных технологий и вычислительной техники. Появление персональных компьютеров

Как только человек открыл для себя понятие "количество", он сразу же принялся подбирать инструменты, оптимизирующие и облегчающие счёт. Сегодня сверхмощные компьютеры, основываясь на принципах математических вычислений, обрабатывают, хранят и передают информацию - важнейший ресурс и двигатель прогресса человечества. Нетрудно составить представление о том, как происходило развитие вычислительной техники, кратко рассмотрев основные этапы этого процесса.

Основные этапы развития вычислительной техники

Самая популярная классификация предлагает выделить основные этапы развития вычислительной техники по хронологическому принципу:

  • Ручной этап. Он начался на заре человеческой эпохи и продолжался до середины XVII столетия. В этот период возникли основы счёта. Позднее, с формированием позиционных систем счисления, появились приспособления (счёты, абак, позднее - логарифмическая линейка), делающие возможными вычисления по разрядам.
  • Механический этап. Начался в середине XVII и длился почти до конца XIX столетия. Уровень развития науки в этот период сделал возможным создание механических устройств, выполняющих основные арифметические действия и автоматически запоминающих старшие разряды.
  • Электромеханический этап - самый короткий из всех, какие объединяет история развития вычислительной техники. Он длился всего около 60 лет. Это промежуток между изобретением в 1887 году первого табулятора до 1946 года, когда возникла самая первая ЭВМ (ENIAC). Новые машины, действие которых основывалось на электроприводе и электрическом реле, позволяли производить вычисления со значительно большей скоростью и точностью, однако процессом счёта по-прежнему должен был управлять человек.
  • Электронный этап начался во второй половине прошлого столетия и продолжается в наши дни. Это история шести поколений электронно-вычислительных машин - от самых первых гигантских агрегатов, в основе которых лежали электронные лампы, и до сверхмощных современных суперкомпьютеров с огромным числом параллельно работающих процессоров, способных одновременно выполнить множество команд.

Этапы развития вычислительной техники разделены по хронологическому принципу достаточно условно. В то время, когда использовались одни типы ЭВМ, активно создавались предпосылки для появления следующих.

Самые первые приспособления для счёта

Наиболее ранний инструмент для счёта, который знает история развития вычислительной техники, - десять пальцев на руках человека. Результаты счёта первоначально фиксировались при помощи пальцев, зарубок на дереве и камне, специальных палочек, узелков.

С возникновением письменности появлялись и развивались различные способы записи чисел, были изобретены позиционные системы счисления (десятичная - в Индии, шестидесятиричная - в Вавилоне).

Примерно с IV века до нашей эры древние греки стали вести счёт при помощи абака. Первоначально это была глиняная плоская дощечка с нанесёнными на неё острым предметом полосками. Счёт осуществлялся путём размещения на этих полосах в определённом порядке мелких камней или других небольших предметов.

В Китае в IV столетии нашей эры появились семикосточковые счёты - суанпан (суаньпань). На прямоугольную деревянную раму натягивались проволочки или верёвки - от девяти и более. Ещё одна проволочка (верёвка), натянутая перпендикулярно остальным, разделяла суанпан на две неравные части. В большем отделении, именуемом "землёй", на проволочки было нанизано по пять косточек, в меньшем - "небе" - их было по две. Каждая из проволочек соответствовала десятичному разряду.

Традиционные счёты соробан стали популярными в Японии с XVI века, попав туда из Китая. В это же время счёты появились и в России.

В XVII столетии на основании логарифмов, открытых шотландским математиком Джоном Непером, англичанин Эдмонд Гантер изобрёл логарифмическую линейку. Это устройство постоянно совершенствовалось и дожило до наших дней. Оно позволяет умножать и делить числа, возводить в степень, определять логарифмы и тригонометрические функции.

Логарифмическая линейка стала прибором, завершающим развитие средств вычислительной техники на ручном (домеханическом) этапе.

Первые механические счётные устройства

В 1623 году немецким учёным Вильгельмом Шиккардом был создан первый механический "калькулятор", который он назвал считающими часами. Механизм этого прибора напоминал обычный часовой, состоящий из шестерёнок и звёздочек. Однако известно об этом изобретении стало только в середине прошлого столетия.

Качественным скачком в области технологии вычислительной техники стало изобретение суммирующей машины "Паскалины" в 1642 году. Её создатель, французский математик Блез Паскаль, начал работу над этим устройством, когда ему не было и 20 лет. "Паскалина" представляла собой механический прибор в виде ящичка с большим количеством взаимосвязанных шестерёнок. Числа, которые требовалось сложить, вводились в машину поворотами специальных колёсиков.

В 1673 году саксонский математик и философ Готфрид фон Лейбниц изобрёл машину, выполнявшую четыре основных математических действия и умевшую извлекать квадратный корень. Принцип её работы был основан на двоичной системе счисления, специально придуманной учёным.

В 1818 году француз Шарль (Карл) Ксавье Тома де Кольмар, взяв за основу идеи Лейбница, изобрёл арифмометр, умеющий умножать и делить. А ещё спустя два года англичанин Чарльз Бэббидж приступил к конструированию машины, которая способна была бы производить вычисления с точностью до 20 знаков после запятой. Этот проект так и остался неоконченным, однако в 1830 году его автор разработал другой - аналитическую машину для выполнения точных научных и технических расчётов. Управлять машиной предполагалось программным путём, а для ввода и вывода информации должны были использоваться перфорированные карты с разным расположением отверстий. Проект Бэббиджа предугадал развитие электронно-вычислительной техники и задачи, которые смогут быть решены с её помощью.

Примечательно, что слава первого в мире программиста принадлежит женщине - леди Аде Лавлейс (в девичестве Байрон). Именно она создала первые программы для вычислительной машины Бэббиджа. Её именем впоследствии был назван один из компьютерных языков.

Разработка первых аналогов компьютера

В 1887 году история развития вычислительной техники вышла на новый этап. Американскому инженеру Герману Голлериту (Холлериту) удалось сконструировать первую электромеханическую вычислительную машину - табулятор. В её механизме имелось реле, а также счётчики и особый сортировочный ящик. Прибор считывал и сортировал статистические записи, сделанные на перфокартах. В дальнейшем компания, основанная Голлеритом, стала костяком всемирно известного компьютерного гиганта IBM.

В 1930 году американец Ванновар Буш создал дифференциальный анализатор. В действие его приводило электричество, а для хранения данных использовались электронные лампы. Эта машина способна была быстро находить решения сложных математических задач.

Ещё через шесть лет английским учёным Аланом Тьюрингом была разработана концепция машины, ставшая теоретической основой для нынешних компьютеров. Она обладала всеми главными свойствами современного средства вычислительной техники: могла пошагово выполнять операции, которые были запрограммированы во внутренней памяти.

Спустя год после этого Джордж Стибиц, учёный из США, изобрёл первое в стране электромеханическое устройство, способное выполнять двоичное сложение. Его действия основывались на булевой алгебре - математической логике, созданной в середине XIX века Джорджем Булем: использовании логических операторов И, ИЛИ и НЕ. Позднее двоичный сумматор станет неотъемлемой частью цифровой ЭВМ.

В 1938 году сотрудник университета в Массачусетсе Клод Шеннон изложил принципы логического устройства вычислительной машины, применяющей электрические схемы для решения задач булевой алгебры.

Начало компьютерной эры

Правительства стран, участвующих во Второй мировой войне, осознавали стратегическую роль вычислительных машин в ведении военных действий. Это послужило толчком к разработкам и параллельному возникновению в этих странах первого поколения компьютеров.

Пионером в области компьютеростроения стал Конрад Цузе - немецкий инженер. В 1941 году им был создан первый вычислительный автомат, управляемый при помощи программы. Машина, названная Z3, была построена на телефонных реле, программы для неё кодировались на перфорированной ленте. Этот аппарат умел работать в двоичной системе, а также оперировать числами с плавающей запятой.

Первым действительно работающим программируемым компьютером официально признана следующая модель машины Цузе - Z4. Он также вошёл в историю как создатель первого высокоуровневого языка программирования, получившего название "Планкалкюль".

В 1942 году американские исследователи Джон Атанасов (Атанасофф) и Клиффорд Берри создали вычислительное устройство, работавшее на вакуумных трубках. Машина также использовла двоичный код, могла выполнять ряд логических операций.

В 1943 году в английской правительственной лаборатории, в обстановке секретности, была построена первая ЭВМ, получившая название "Колосс". В ней вместо электромеханических реле использовалось 2 тыс. электронных ламп для хранения и обработки информации. Она предназначалась для взлома и расшифровки кода секретных сообщений, передаваемых немецкой шифровальной машиной "Энигма", которая широко применялась вермахтом. Существование этого аппарата ещё долгое время держалось в строжайшей тайне. После окончания войны приказ о его уничтожении был подписан лично Уинстоном Черчиллем.

Разработка архитектуры

В 1945 году американским математиком венгерско-немецкого происхождения Джоном (Яношем Лайошем) фон Нейманом был создан прообраз архитектуры современных компьютеров. Он предложил записывать программу в виде кода непосредственно в память машины, подразумевая совместное хранение в памяти компьютера программ и данных.

Архитектура фон Неймана легла в основу создаваемого в то время в Соединённых Штатах первого универсального электронного компьютера - ENIAC. Этот гигант весил около 30 тонн и располагался на 170 квадратных метрах площади. В работе машины были задействованы 18 тыс. ламп. Этот компьютер мог произвести 300 операций умножения или 5 тыс. сложения за одну секунду.

Первая в Европе универсальная программируемая ЭВМ была создана в 1950 году в Советском Союзе (Украина). Группа киевских учёных, возглавляемая Сергеем Алексеевичем Лебедевым, сконструировала малую электронную счётную машину (МЭСМ). Её быстродействие составляло 50 операций в секунду, она содержала около 6 тыс. электровакуумных ламп.

В 1952 году отечественная вычислительная техника пополнилась БЭСМ - большой электронной счётной машиной, также разработанной под руководством Лебедева. Эта ЭВМ, выполнявшая в секунду до 10 тыс. операций, была на тот момент самой быстродействующей в Европе. Ввод информации в память машины происходил при помощи перфоленты, выводились данные посредством фотопечати.

В этот же период в СССР выпускалась серия больших ЭВМ под общим названием "Стрела" (автор разработки - Юрий Яковлевич Базилевский). С 1954 года в Пензе началось серийное производство универсальной ЭВМ "Урал" под руководством Башира Рамеева. Последние модели были аппаратно и программно совместимы друг с другом, имелся широкий выбор периферических устройств, позволяющий собирать машины различной комплектации.

Транзисторы. Выпуск первых серийных компьютеров

Однако лампы очень быстро выходили из строя, весьма затрудняя работу с машиной. Транзистор, изобретённый в 1947 году, сумел решить эту проблему. Используя электрические свойства полупроводников, он выполнял те же задачи, что и электронные лампы, однако занимал значительно меньший объём и расходовал не так много энергии. Наряду с появлением ферритовых сердечников для организации памяти компьютеров, использование транзисторов дало возможность заметно уменьшить размеры машин, сделать их ещё надёжнее и быстрее.

В 1954 году американская фирма "Техас Инструментс" начала серийно производить транзисторы, а два года спустя в Массачусетсе появился первый построенный на транзисторах компьютер второго поколения - ТХ-О.

В середине прошлого столетия значительная часть государственных организаций и крупных компаний использовала компьютеры для научных, финансовых, инженерных расчётов, работы с большими массивами данных. Постепенно ЭВМ приобретали знакомые нам сегодня черты. В этот период появились графопостроители, принтеры, носители информации на магнитных дисках и ленте.

Активное использование вычислительной техники привело к расширению областей её применения и потребовало создания новых программных технологий. Появились языки программирования высокого уровня, позволяющие переносить программы с одной машины на другую и упрощающие процесс написания кода ("Фортран", "Кобол" и другие). Появились особые программы-трансляторы, преобразовывающие код с этих языков в команды, прямо воспринимаемые машиной.

Появление интегральных микросхем

В 1958-1960 годах, благодаря инженерам из Соединённых Штатов Роберту Нойсу и Джеку Килби, мир узнал о существовании интегральных микросхем. На основе из кремниевого или германиевого кристалла монтировались миниатюрные транзисторы и другие компоненты, порой до сотни и тысячи. Микросхемы размером чуть более сантиметра работали гораздо быстрее, чем транзисторы, и потребляли намного меньше энергии. С их появлением история развития вычислительной техники связывает возникновение третьего поколения ЭВМ.

В 1964 году фирмой IBM был выпущен первый компьютер семейства SYSTEM 360, в основу которого легли интегральные микросхемы. С этого времени можно вести отсчёт массового выпуска ЭВМ. Всего было произведено более 20 тыс. экземпляров данного компьютера.

В 1972 году в СССР была разработана ЕС (единая серия) ЭВМ. Это были стандартизированные комплексы для работы вычислительных центров, имевшие общую систему команд. За основу была взята американская система IBM 360.

В следующем году компания DEC выпустила мини-компьютер PDP-8, ставший первым коммерческим проектом в этой области. Относительно низкая стоимость мини-компьютеров дала возможность использовать их и небольшим организациям.

В этот же период постоянно совершенствовалось программное обеспечение. Разрабатывались операционные системы, ориентированные на то, чтобы поддерживать максимальное количество внешних устройств, появлялись новые программы. В 1964 году разработали Бейсик - язык, предназначенный специально для подготовки начинающих программистов. Через пять лет после этого возник Паскаль, оказавшийся очень удобным для решения множества прикладных задач.

Персональные компьютеры

После 1970 года начался выпуск четвёртого поколения ЭВМ. Развитие вычислительной техники в это время характеризуется внедрением в производство компьютеров больших интегральных схем. Такие машины теперь могли совершать за одну секунду тысячи миллионов вычислительных операций, а ёмкость их ОЗУ увеличилась до 500 миллионов двоичных разрядов. Существенное снижение себестоимости микрокомпьютеров привело к тому, что возможность их купить постепенно появилась у обычного человека.

Одним из первых производителей персональных компьютеров стала компания Apple. Создавшие её Стив Джобс и Стив Возняк сконструировали первую модель ПК в 1976 году, дав ей название Apple I. Стоимость его составила всего 500 долларов. Через год была представлена следующая модель этой компании - Apple II.

Компьютер этого времени впервые стал похожим на бытовой прибор: помимо компактного размера, он имел изящный дизайн и интерфейс, удобный для пользователя. Распространение персональных компьютеров в конце 1970 годов привело к тому, что спрос на большие ЭВМ заметно упал. Этот факт всерьёз обеспокоил их производителя - компанию IBM, и в 1979 году она выпустила на рынок свой первый ПК.

Два года спустя появился первый микрокомпьютер этой фирмы с открытой архитектурой, основанный на 16-разрядном микропроцессоре 8088, производимом компанией "Интел". Компьютер комплектовался монохромным дисплеем, двумя дисководами для пятидюймовых дискет, оперативной памятью объемом 64 килобайта. По поручению компании-создателя фирма "Майкрософт" специально разработала операционную систему для этой машины. На рынке появились многочисленные клоны IBM PC, что подтолкнуло рост промышленного производства персональных ЭВМ.

В 1984 году компанией Apple был разработан и выпущен новый компьютер - Macintosh. Его операционная система была исключительно удобной для пользователя: представляла команды в виде графических изображений и позволяла вводить их с помощью манипулятора - мыши. Это сделало компьютер ещё более доступным, поскольку теперь от пользователя не требовалось никаких специальных навыков.

ЭВМ пятого поколения вычислительной техники некоторые источники датируют 1992-2013 годами. Вкратце их основная концепция формулируется так: это компьютеры, созданные на основе сверхсложных микропроцессоров, имеющие параллельно-векторную структуру, которая делает возможным одновременное выполнение десятков последовательных команд, заложенных в программу. Машины с несколькими сотнями процессоров, работающих параллельно, позволяют ещё более точно и быстро обрабатывать данные, а также создавать эффективно работающие сети.

Развитие современной вычислительной техники уже позволяет говорить и о компьютерах шестого поколения. Это электронные и оптоэлектронные ЭВМ, работающие на десятках тысяч микропроцессоров, характеризующиеся массовым параллелизмом и моделирующие архитектуру нейронных биологических систем, что позволяет им успешно распознавать сложные образы.

Последовательно рассмотрев все этапы развития вычислительной техники, следует отметить интересный факт: изобретения, хорошо зарекомендовавшие себя на каждом из них, сохранились до наших дней и с успехом продолжают использоваться.

Классы вычислительной техники

Существуют различные варианты классификации ЭВМ.

Так, по назначению компьютеры делятся:

  • на универсальные - те, которые способны решать самые различные математические, экономические, инженерно-технические, научные и другие задачи;
  • проблемно-ориентированные - решающие задачи более узкого направления, связанные, как правило, с управлением определёнными процессами (регистрация данных, накопление и обработка небольших объёмов информации, выполнение расчётов в соответствии с несложными алгоритмами). Они обладают более ограниченными программными и аппаратными ресурсами, чем первая группа компьютеров;
  • специализированные компьютеры решают, как правило, строго определённые задачи. Они имеют узкоспециализированную структуру и при относительно низкой сложности устройства и управления достаточно надёжны и производительны в своей сфере. Это, к примеру, контроллеры или адаптеры, управляющие рядом устройств, а также программируемые микропроцессоры.

По размерам и производительной мощности современная электронно-вычислительная техника делится:

  • на сверхбольшие (суперкомпьютеры);
  • большие компьютеры;
  • малые компьютеры;
  • сверхмалые (микрокомпьютеры).

Таким образом, мы увидели, что устройства, сначала изобретённые человеком для учёта ресурсов и ценностей, а затем - быстрого и точного проведения сложных расчётов и вычислительных операций, постоянно развивались и совершенствовались.

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

У древнего человека был свой счетный инструмент - десять пальцев на руках. Загибал человек пальцы - складывал, разгибал - вычитал. И человек догадался: для счета можно использовать все, что попадется под руку, - камешки, палочки, косточки. Потом стали завязывать узелки на веревке, делать зарубки на палках и дощечках (рис. 1.1).

Рис. 1.1. Узелки (а) и зарубки на дощечках (б)

Период абака. Абаком (гр. abax - доска) называлась дощечка, покрытая слоем пыли, на которой острой палочкой проводились линии и в полученных колонках размещались какие-нибудь предметы по позиционному принципу. В V-IV вв. до н. э. были созданы древнейшие из известных счетов - «саламинская доска» (по названию острова Саламин в Эгейском море), которая у греков и в Западной Европе называлась «абак». В Древнем Риме абак появился в V-VI вв. н. э. и назывался calculi или abakuli. Изготавливался абак из бронзы, камня, слоновой кости и цветного стекла. До нашего времени сохранился бронзовый римский абак, на котором камешки передвигались в вертикально прорезанных желобках (рис. 1.2).

Рис. 1.2.

В XV-XVI вв. в Европе был распространен счет на линиях или счетных таблицах с укладываемыми на них жетонами.

В XVI в. появились русские счеты с десятичной системой счисления. В 1828 г. генерал-майор Ф. М. Свободской выставил на обозрение оригинальный прибор, состоящий из множества счетов, соединенных в общей раме (рис. 1.3). Все операции сводились к действиям сложения и вычитания.

Рис. 1.3.

Период механических устройств. Этот период продолжался от начала XVII до конца XIX в.

В 1623 г. Вильгельм Шиккард описал устройство счетной машины, в которой были механизированы операции сложения и вычитания. В 1642 г. французский механик Блез Паскаль сконструировал первую механическую счетную машину - «Паскалину» (рис. 1.4).

В 1673 г. немецким ученым Гофтридом Лейбницем была создана первая механическая вычислительная машина, выполняв-

Рис. 1.4.

шая четыре арифметических действия (сложение, вычитание, умножение и деление). В 1770 г. в Литве Е. Якобсон создал суммирующую машину, определяющую частное и способную работать с пятизначными числами.

В 1801 - 1804 гг. французский изобретатель Ж. М. Жаккар впервые использовал перфокарты для управления автоматическим ткацким станком.

В 1823 г. английский ученый Чарлз Бэббидж разрабатывает проект «Разностной машины», предвосхитившей современную программно-управляемую автоматическую машину (рис. 1.5).

В 1890 г. житель Петербурга Вильгодт Однер изобрел арифмометр и наладил их выпуск. К 1914 г. в одной только России насчитывалось более 22 тыс. арифмометров Однера. В первой четверти XX в. эти арифмометры были единственными математическими машинами, широко применявшимися в различных областях человеческой деятельности (рис. 1.6).


Рис. 1.5. Машина Бэббиджа Рис. 1.6. Арифмометр

Период ЭВМ. Этот период начался в 1946 г. и продолжается в настоящее время. Он характеризуется соединением достижений в области электроники с новыми принципами построения вычислительных машин.

В 1946 г. под руководством Дж. Моучли и Дж. Эккерта в США была создана первая ЭВМ - «ЭНИАК» (ENIAC) (рис. 1.7). Она имела следующие характеристики: длина 30 м, высота 6 м, вес 35 т, 18 тыс. вакуумных ламп, 1500 реле, 100 тыс. сопротивлений и конденсаторов, 3500 оп/с. Тогда же эти ученые начали работу над новой машиной - «ЭДВАК» (EDVAC - Electronic


Рис. 1.7.

Discret Variable Automatic Computer - электронный автоматический вычислитель с дискретными переменными), программа которой должна была храниться в памяти компьютера. В качестве внутренней памяти предполагалось использовать ртутные трубки, применявшиеся в радиолокации.

В 1949 г. в Великобритании была построена ЭВМ «EDSAC» с хранимой в памяти программой.

Появление первых ЭВМ до сих пор вызывает споры. Так, немцы считают первой ЭВМ машину для артиллерийских расчетов, созданную Конрадом Цузе в 1941 г., хотя она работала на электрических реле и была, таким образом, не электронной, а электромеханической. Для американцев - это «ЭНИАК» (1946 г., Дж. Моучли и Дж. Эккерт). Болгары считают изобретателем ЭВМ Джона (Ивана) Атанасова, сконструировавшего в 1941 г. в США машину для решения систем алгебраических уравнений.

Англичане, порывшись в секретных архивах, заявили, что первый электронный компьютер был создан в 1943 г. в Англии и предназначался для расшифровки переговоров немецкого высшего командования. Это оборудование считалось настолько секретным, что после войны оно было уничтожено по приказу Черчилля, а чертежи сожжены, чтобы секрет не попал в чужие руки.

Секретную повседневную переписку немцы вели с помощью шифровальных машинок «Энигма» (лат. enigma - загадка). К началу Второй мировой войны англичане уже знали, как работает «Энигма», и искали способы расшифровки ее посланий, но у немцев появилась еще одна шифровальная система, предназначенная только для самых важных сообщений. Это была изготовленная фирмой «Лоренц» в небольшом количестве экземпляров машина «Шлюссельцузатц-40» (название переводится как «шифровальная приставка»). Внешне она представляла собой гибрид обычного телетайпа и механического кассового аппарата. Текст, набиравшийся на клавиатуре, телетайп переводил в последовательность электрических импульсов и пауз между ними (каждой букве соответствует набор из пяти импульсов и «пустых мест»). В «кассовом аппарате» вращались два комплекта по пять зубчатых колесиков, которые случайным образом добавляли к каждой букве еще два набора по пять импульсов и пропусков. Колесики имели разное количество зубцов, и это количество можно было менять: зубцы были сделаны подвижными, их можно было сдвигать в сторону либо выдвигать на место. Имелось еще два «моторных» колесика, каждое из которых вращало свой комплект зубчаток.

В начале передачи зашифрованного послания радист сообщал адресату исходное положение колесиков и число зубцов на каждом из них. Эти установочные данные менялись перед каждой передачей. Выставив такие же наборы колесиков в таком же положении на своей машине, принимавший радист добивался того, что лишние буквы автоматически вычитались из текста, и телетайп печатал исходное сообщение.

В 1943 г. математиком Максом Ньюменом в Англии была разработана электронная машина «Колоссус». Колесики машины моделировались 12 группами электронных ламп - тиратронов. Автоматически перебирая разные варианты состояний каждого тиратрона и их сочетаний (тиратрон может находиться в двух состояниях - пропускать или не пропускать электрический ток, т. е. давать импульс или паузу), «Колоссус» разгадывал начальную установку шестеренок немецкой машины. Первый вариант «Колоссуса» имел 1500 тиратронов, а второй, заработавший в июне 1944 г., - 2500. За час машина «проглатывала» 48 км перфоленты, на которую операторы набивали ряды единиц и нулей из немецких посланий, в секунду обрабатывалось 5000 букв. Эта ЭВМ имела память, основанную на заряжавшихся и разряжавшихся конденсаторах. Она позволила читать сверхсекретную переписку Гитлера, Кессельринга, Роммеля и т. д.

Примечание. Современный компьютер разгадывает начальное положение колесиков «Шлюссельцузатц-40» вдвое медленнее, чем это делал «Колоссус», так, задача, которая в 1943 г. решалась за 15 мин, занимает у ПЭВМ «Репйит» 18 ч! Дело в том, что современные компьютеры задуманы как универсальные, предназначенные для выполнения самых разных задач, и не всегда могут состязаться со старинными ЭВМ, умевшими делать только одно действие, зато очень быстро.

Первая отечественная электронная вычислительная машина МЭСМ была разработана в 1950 г. Она содержала более 6000 электронных ламп. К этому поколению ЭВМ можно отнести: «БЭСМ-1», «М-1», «М-2», «М-3», «Стрела», «Минск-1», «Урал-1», «Урал-2», «Урал-3», «М-20», «Сетунь», «БЭСМ-2», «Раздан» (табл. 1.1). Быстродействие их не превышало 2-3 тыс. оп/с, емкость оперативной памяти - 2 К или 2048 машинных слов (1 К = 1024) длиной 48 двоичных знаков.

Таблица 1.1. Характеристики отечественных ЭВМ

Характери

Первое поколение

Второе поколение

Адресность

Длина ма-

шинного ело-

ва (двоичные разряды)

Быстродейст-

Ферритовый сердечник

Около половины всего объема данных в информационных системах мира хранится на больших ЭВМ. Для этих целей фирма 1ВМ еще в 1960-х гг. начала выпускать вычислительные машины 1ВМ/360, 1ВМ/370 (рис. 1.8), которые получили широкое распространение в мире.

С появлением первых вычислительных машин в 1950 г. возникла идея использования вычислительной техники для целей управления технологическими процессами. Управление на базе ЭВМ позволяет поддерживать параметры процесса в режиме, близком к оптимальному. В результате сокращается расход материалов, энергии, повышается производительность и качество, обеспечивается быстрая перестройка оборудования на выпуск продукции другого вида.


Рис. 1.8.

Пионером промышленного использования управляющих ЭВМ за рубежом явилась фирма Digital Equipment Corp. (DEC), которая выпустила в 1963 г. для управления ядерными реакторами специализированную ЭВМ «PDP-5». Исходными данными служили измерения, получаемые в результате аналого-цифрового преобразования, точность которых составляла 10-11 двоичных разрядов. В 1965 г. фирма DEC выпускает первую миниатюрную ЭВМ «PDP-8» размером с холодильник и стоимостью 20 тыс. долл., в качестве элементной базы которой были использованы интегральные схемы.

До появления интегральных схем транзисторы изготовлялись по отдельности, и при сборке схем их приходилось соединять и паять вручную. В 1958 г. американский ученый Джек Килби придумал, как на одной пластине полупроводника получить несколько транзисторов. В 1959 г. Роберт Нойс (будущий основатель фирмы Intel) изобрел более совершенный метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные электронные схемы стали называться интегральными схемами, или чипами. В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось каждый год приблизительно вдвое. В 1968 г. фирма Burroughs выпустила первый компьютер на интегральных схемах, а в 1970 г. фирма Intel начала продавать интегральные схемы памяти.

В 1970 г. был сделан еще один шаг на пути к персональному компьютеру - Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большой ЭВМ. Так появился первый микропроцессор Intel-4004, который поступил в продажу в конце 1970 г. Конечно, возможности Intel-4004 были куда скромнее, чем у центрального процессора большой ЭВМ, - он работал гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших ЭВМ обрабатывали 16 или 32 бита одновременно). В 1973 г. фирма Intel выпустила 8-битовый микропроцессор Intel-8008, а в 1974 г. - его усовершенствованную версию Intel-8080, которая до конца 1970-х гг. была стандартом для микрокомпьютерной индустрии (табл. 1.2).

Таблица 1.2. Поколения ЭВМ и их основные характеристики

Поколение

Четвертое (с 1975 г.)

Элементная база ЭВМ

Электронные лампы, реле

Транзисторы,

параметроны

Сверхбольшие ИС (СБИС)

Производительность центрального процессора

До 3 10 5 оп/с

До 3 10 6 оп/с

До 3 10 7 оп/с

3 10 7 оп/с

Тип оперативной памяти (ОП)

Триггеры,

ферритовые

сердечники

Миниатюрные

ферритовые

сердечники

Полупроводниковая на

Полупроводниковая на

Более 16 Мб

Характерные типы ЭВМ

поколения

Малые, средние, большие, специальные

мини- и мик-роЭВМ

СуперЭВМ,

ПК, специальные, общие, сети ЭВМ

Типичные модели поколения

IBM 7090, БЭСМ-6

БХ-2, 1ВМ РС/ХТ/АТ, РБ/2, Сгау, сети

Характерное

программное

обеспечение

Коды, автокоды, ассемблеры

Языки программирования, диспетчеры, АСУ, АСУТП

ППП, СУБД, САПРы, ЯВУ, операционные

БД, ЭС, системы параллельного программирования

Поколения ЭВМ определяются элементной базой (лампы, полупроводники, микросхемы различной степени интеграции (рис. 1.9)), архитектурой и вычислительными возможностями (табл. 1.3).

Таблица 1.3. Особенности поколений ЭВМ

Поколение

Особенности

I поколение (1946-1954)

Применение вакуумно-ламповой технологии, использование систем памяти на ртутных линиях задержки, магнитных барабанах, электронно-лучевых трубках. Для ввода-вывода данных применялись перфоленты и перфокарты, магнитные ленты и печатающие устройства

II поколение (1955-1964)

Использование транзисторов. Компьютеры стали более надежными, быстродействие их повысилось. С появлением памяти на магнитных сердечниках цикл ее работы уменьшился до десятков микросекунд. Главный принцип структуры - централизация. Появились высокопроизводительные устройства для работы с магнитными лентами, устройства памяти на магнитных дисках

III поколение (1965-1974)

Компьютеры проектировались на основе интегральных схем малой степени интеграции (МИС от 10 до 100 компонентов на кристалл) и средней степени интеграции (СИС от 10 до 1000 компонентов на кристалл). В конце 1960-х гг. появились мини-компьютеры. В 1971 г. появился первый микропроцессор

IV поколение (с 1975 г.)

Использование при создании компьютеров больших интегральных схем (БИС от 1000 до 100 тыс. компонентов на кристалл) и сверхбольших интегральных схем (СБИС от 100 тыс. до 10 млн компонентов на кристалл). Главный акцент при создании компьютеров сделан на их «интеллектуальности», а также на архитектуре, ориентированной на обработку знаний


а б в

Рис. 1.9. Элементная база ЭВМ: а - электронная лампа; б - транзистор;

в - интегральная микросхема

Первым микрокомпьютером был «Altair-8800», созданный в 1975 г. небольшой компанией в Альбукерке (штат Нью-Мексико) на основе микропроцессора Intel-8080. В конце 1975 г. Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Altair» интерпретатор языка Basic, что позволило пользователям достаточно просто писать программы.

Впоследствии появились компьютеры «TRS-80 РС», «РЕТ РС» и «Apple» (рис. 1.10).

Рис. 1.10.

Отечественная промышленность выпускала DEC-совмести-мые (диалоговые вычислительные комплексы ДВК-1, ..., ДВК-4 на основе ЭВМ «Электроника МС-101», «Электроника 85», «Электроника 32») и IBM PC-совместимые (ЕС 1840 - ЕС 1842, ЕС 1845, ЕС 1849, ЕС 1861, Искра 4861), существенно уступавшие по своим характеристикам вышеназванным.

В последнее время широко известны персональные компьютеры, выпускаемые фирмами США: Compaq Computer, Apple (Macintosh), Hewlett Packard, Dell, DEC; фирмами Великобритании: Spectrum, Amstard; фирмой Франции Micra; фирмой Италии Olivetty; фирмами Японии: Toshiba, Panasonic, Partner.

Наибольшей популярностью в настоящее время пользуются персональные компьютеры фирмы IBM (International Business Machines Corporation).

В 1983 г. появился компьютер IBM PC XT со встроенным жестким диском, а в 1985 г. компьютер IBM PC АТ на основе 16-разрядного процессора Intel 80286 (рис. 1.11).

В 1989 г. разработан процессор Intel 80486 с модификациями 486SX, 486DX, 486DX2 и 486DX4. Тактовые частоты процессоров 486DX в зависимости от модели равны 33, 66 и 100 МГц.


Новое семейство моделей ПК IBM получило название PS/2 (Personal System 2). Первые модели семейства PS/2 использовали процессор Intel 80286 и фактически копировали ПК АТ, но на базе иной архитектуры.

В 1993 г. появились процессоры Pentium с тактовой частотой 60 и 66 МГц.

В 1994 г. фирма Intel стала производить процессоры Pentium с тактовой частотой 75, 90 и 100 МГц. В 1996 г. тактовая частота процессоров Pentium выросла до 150, 166 и 200 МГц (рис. 1.12).


Системный

Манипулятор типа «мышь»

Рис. 1.12. Конфигурация мультимедийного компьютера

В 1997 г. фирма Intel выпустила новый процессор Pentium MMX с тактовыми частотами 166 и 200 МГц. Аббревиатура ММХ означала, что данный процессор оптимизирован для работы с графической и видеоинформацией. В 1998 г. фирма Intel объявила о выпуске процессора Celeron с тактовой частотой 266 МГц.

С 1998 года фирма Intel анонсировала версию процессора Pentium® II Хеоп™ с тактовой частотой 450 МГц (табл. 1.4).

Таблица 1.4. Компьютеры фирмы IBM

компьютера

Процессор

Тактовая частота, МГц

оперативной

Долгое время производители процессоров - прежде всего Intel и AMD для повышения производительности процессоров повышали их тактовую частоту. Однако при тактовой частоте более 3,8 ГГц чипы перегреваются и о выгоде можно забыть. Потребовались новые идеи и технологии, одной из которых и стала идея создания многоядерных чипов. В таком чипе параллельно работают два процессора и более, которые при меньшей тактовой частоте обеспечивают большую производительность. Исполняемая в данный момент программа делит задачи по обработке данных на оба ядра. Это дает максимальный эффект, когда и операционная система, и прикладные программы рассчитаны на параллельную работу, как, например, для обработки графики.

Многоядерная архитектура - это вариант архитектуры процессоров, предполагающий размещение двух или более «исполняющих», или вычислительных, ядер Pentium® в одном процессоре. Многоядерный процессор вставляется в процессорный разъем, но операционная система воспринимает каждое из его исполняющих ядер как отдельный логический процессор, обладающий всеми соответствующими исполняющими ресурсами (рис. 1.13).

В основе такой реализации внутренней архитектуры процессора лежит стратегия «разделяй и властвуй». Иначе говоря, разде-


Рис. 1.13.

ляя вычислительную работу, выполняемую в традиционных микропроцессорах одним ядром Pentium, между несколькими исполнительными ядрами Pentium, многоядерный процессор может выполнять больше работы за конкретный интервал времени. Для этого программное обеспечение (ПО) должно поддерживать распределение нагрузки между несколькими исполнительными ядрами. Эта функциональность называется параллелизмом на уровне потоков, или организацией поточной обработки, а поддерживающие ее приложения и операционные системы (такие, как Microsoft Windows ХР) называются многопоточными.

Многоядерность влияет и на одновременную работу стандартных приложений. Например, одно ядро процессора может отвечать за программу, работающую в фоновом режиме, в то время как антивирусная программа занимает ресурсы второго ядра. На практике двухъядерные процессоры не производят вычисления в два раза быстрее одноядерных: хотя прирост быстродействия и оказывается значительным, но при этом он зависит от типа приложения.

Первые двухъядерные процессоры появились на рынке в 2005 г. Со временем у них появлялось все больше преемников. Поэтому «старые» двухъядерные процессоры сегодня серьезно подешевели. Их можно найти в компьютерах ценой от 600 долл, и ноутбуках ценой от 900 долл. Компьютеры с современными двухъядерными чипами стоят примерно на 100 долл, дороже, чем модели, оснащенные «старыми» чипами. Один из главных разработчиков многоядерных процессоров - корпорация Intel.

Перед появлением двухъядерных чипов изготовители предлагали одноядерные процессоры с возможностью параллельного выполнения нескольких программ. Некоторые процессоры серии Pentium 4 имели функцию Hyper-Threading, возвращающую значение в байтах и содержащую логический и физический идентификаторы текущего процесса. Ее можно рассматривать как предшественницу архитектуры Dual-Core, состоящей из двух оптимизированных мобильных исполнительных ядер. Dual-Core означает, что в то время, пока одно ядро занято запуском приложения, или, например, проверкой на вирусную активность, другое ядро будет доступно для выполнения иных задач, например, пользователь сможет путешествовать по Интернету или работать с таблицей. Хотя у процессора было одно физическое ядро, чип был сконструирован так, что мог исполнять две программы одновременно (рис. 1.14).

Панель управления

ОСРВ QNX Neutrino (одна копия)

Интерфейс командной строки (ядра 0 и 1)

Маршрутизация (ядра 0 и 1)

Управление, администрирование и техническое обслуживание (ядра 0 и 1)

Аппаратное обеспечение информационной панели

Мониторинг информационной панели (ядра 0 и 1)

Рис. 1.14. Схема использования многопроцессорной обработки

в панели управления

Операционная система распознает такой чип как два отдельных процессора. Обычные процессоры обрабатывают 32 бита за один такт. Новейшие чипы успевают обработать за один такт вдвое больше данных, т. е. 64 бита. Это преимущество особенно заметно при обработке больших объемов данных (например, при обработке фотографий). Но для того чтобы им воспользоваться, операционная система и приложения должны поддерживать именно 64-битный режим обработки.

Под специально разработанными 64-битными версиями Windows ХР и Windows Vista в зависимости от необходимости запускаются 32- и 64-битные программы.

Для автоматизации работы с данными используют средства вычислительной техники.

Вычислительная техника (ВТ ) − это совокупность устройств, предназначенных для автоматизированной обработки данных.

Вычислительная система (ВС) – это конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка.

Центральным устройством большинства ВС является компьютер (ЭВМ).

Компьютер (англ. computer - «вычислитель»), ЭВМ (электронная вычислительная машина) - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

Простейшие ручные приспособления

История компьютера тесным образом связана с попытками человека облегчить, автоматизировать большие объёмы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось устройство – абак . Абак (греч. αβαξ, abákion, лат. abacus − доска) − это счётная доска, простейшее счётное устройство, применявшееся для арифметических вычислений приблизительно с IV века до н.э. в Древней Греции, Древнем Риме. В Европе абак применялся до XVIII века.

В России ещё в средние века (16-17 вв.) на основе абака было разработано другое приспособление – русские счёты .

Механические приспособления

Механизация вычислительных операций началась в XVII веке. На первом этапе для создания механических вычислительных устройств использовались механизмы, аналогичные часовым.

В 1623 год − немецкий ученый Вильгельм Шиккард разработал первое в мире механическое устройство («суммирующие часы») для выполнения операций сложения и вычитания шестиразрядных десятичных чисел. Было ли устройство реализовано при жизни изобретателя, достоверно неизвестно, но в 1960 году оно было воссоздано по чертежам и подтвердило свою работоспособность.

В 1642 году французский механик Блез Паскаль сконструировал первое в мире механическое цифровое вычислительное устройство («Паскалин »), построенное на основе зубчатых колес. Оно могло суммировать и вычитать пятиразрядные десятичные числа, а последние модели оперировали числами с восемью десятичными разрядами.

В 1673 г. немецкий философ и математик Готфрид Вильгельм Лейбниц создал механический калькулятор, который при помощи двоичной системы счисления выполнял умножение, деление, сложение и вычитание. Операции умножения и деления выполнялись путём многократного повторения операций сложения и вычитания.

Однако широкое распространение вычислительные аппараты получили только в 1820 году, когда француз Чарльз Калмар изобрёл машину, которая могла производить четыре основных арифметических действия . Машину Калмара назвали арифмометр . Благодаря своей универсальности арифмометры использовались довольно длительное время до 60-х годов ХХ века.

Автоматизация вычислений

Идея автоматизации вычислительных операций пришла из часовой промышленности. Старинные монастырские башенные часы были построены так, чтобы в заданное время включать механизм, связанный с системой колоколов.

В 1833 году английский ученый, профессор Кембриджского университета Чарльз Беббидж разработал проект аналитической машины , которая имела черты современного компьютера. Это был гигантский арифмометр с программным управлением, арифметическим и запоминающим устройствами. Оно имело устройство для ввода информации, блок управления, запоминающее устройство и устройство вывода результатов.

Сотрудницей и помощницей Ч. Беббиджа во многих его научных изысканиях была леди Ада Лавлейс (урожденная Байрон).

Она разработала первые программы для машины и предвосхитила основы современного программирования для цифровых вычислительных машин с программным управлением. Заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

Она предсказала появление современных компьютеров как многофункциональных машин не только для вычислений, но и для работы с графикой, звуком. В середине 70-х годов двадцатого столетия министерство обороны США официально утвердило название единого языка программирования американских вооруженных сил. Язык носит название Ada . День программиста отмечается в день рождения Ады Лавлейс 10 декабря.

Особенностью Аналитической машины стало то, что здесь впервые был реализован принцип разделения информации на команды и данные . Для ввода и вывода данных Бэббидж предлагал использовать перфокарты-листы из плотной бумаги с информацией, наносимой с помощью отверстий.

В 1888 году американский инженер Герман Холлерит сконструировал первую электромеханическую счётную машину. Эта машина, названная табулятором , могла считывать и сортировать статистические записи, закодированные на перфокартах. Для работы этой машины использовалось электричество. В 1890 изобретение Холлерита было использовано в 11-ой американской переписи населения. Работа, которую 500 сотрудников выполняли в течение семи лет, Холлерит с 43 помощниками на 43 табуляторах выполнил за один месяц.

Дальнейшее развитие науки и техники позволили в 1940-х годах построить первые вычислительные машины. В 1944 г. американский инженер Говард Эйкен при поддержке фирмы Ай-Би-Эм (IBM) сконструировал компьютер для выполнения баллистических расчетов. Этот компьютер, названный «Марк 1 », по площади занимал примерно половину футбольного поля и включал более 800 километров проводов, около 750 тыс.деталей, 3304 реле. «Марк-1 » был основан на использовании электромеханических реле и оперировал десятичными числами, закодированными на перфоленте . Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух 23-разрядных чисел ей было необходимо 4 секунды.

Но электромеханические реле работали недостаточно быстро. В 1946 г. По заказу Армии США был создан первый широкомасштабный электронный цифровой компьютер ЭНИАК (ENIAC - электронный числовой интегратор и вычислитель), который можно было перепрограммировать для решения полного диапазона задач. Разработали его американские ученые Джон Уильям Мокли и Джон Преспер Экерт. В ЭНИАКе в качестве основы компонентной базы электромеханические реле были заменены вакуумными лампами . Всего комплекс включал 17468 ламп, 7200 кремниевых диодов, 1500 реле, 70000 резисторов и 10000 конденсаторов. Потребляемая мощность – 150 кВт по тем временам было достаточно для освещения большого города. Вычислительная мощность – 300 операций умножения или 5000 операций сложения в секунду. Вес – 27 тонн, более 30 метров. Вычисления проводились в десятичной системе. ЭНИАК использовался для расчета баллистических таблиц, предсказания погоды, расчетов в области атомной энергетики, аэродинамики, изучения космоса.

В СССР вычислительная машина МЭСМ (малая электронная счётная машина) была создана в 1951 году под руководством академика Сергея Алексеевича Лебедева. Машина вычисляла факториалы натуральных чисел и решала уравнения параболы. Одновременно Лебедев работал над созданием БЭСМ - быстродействующей электронной счётной машины, разработка которой была завершена в 1953 году.

В 1971 году фирмой Intel (США) был создан первый микропроцессор - программируемое логическое устройство, изготовленное по технологии СБИС (сверхбольших интегральных схем).

В 1964г. сотрудник Стэнфордского исследовательского центра Дуглас Энгельбарт продемонстрировал работу первой мыши-манипулятора , но только четыре года спустя мышка была показана на компьютерной конференции в Сан-Франциско.

Первый персональный компьютер (ПК) в 1976г. выпустила фирма Apple ; в СССР ПК появились в 1985г .

Таблица 1. Поколения ЭВМ

Показатель

Поколения ЭВМ

1950-1960-е годы

1960-1970-е годы

1970-1980-е годы

Четвертое

1980-1990-е годы

1990-настоящее время

Элементная база процессора

Электронные лампы

Полупроводники (Транзисторы)

Малые интегральные схемы (МИС)

Большие ИС (БИС) и Сверхбольшие ИС (СБИС)

Оптоэлектроника

Криоэлектроника (лазеры, голография)

Элементная база ОЗУ

Электронно-лучевые трубки

Ферритовые сердечники

Кремниевые кристаллы

БИС и СБИС

Основные устройства ввода

Пульт, перфокарточный, перфоленточный ввод

Алфавитно-цифровой дисплей, клавиатура

Цветной графический дисплей, клавиатура, “мышь” и др.

Цветной графический дисплей, сканер, клавиатура, устройства голосовой связи с ЭВМ

Основные устройства вывода

Алфавитно-цифровое печатающее устройство (АЦПУ), перфоленточный вывод

Графопостроитель, принтер

Внешняя память

Магнитные ленты, барабаны, перфоленты, перфокарты

Магнитный диск

Перфоленты, магнитный диск (30 см в диаметре)

Магнитные и оптические диски

Максимальная емкость ОЗУ, байт

Максимальное быстродействие процессора (оп/с)

Многопроцессорность

Многопроцессорность

Языки программирования

Универсальные языки программирования, трансляторы (машинный код)

Пакетные операционные системы, оптимизирующие трансляторы

(Ассемблер, Фортран)

Процедурные языки высокого уровня (ЯВУ)

Новые процедурные ЯВУ и Непроцедурные ЯВУ

Новые непроцедурные ЯВУ

Цель использования ЭВМ

Научно-технические расчеты

Технические и экономические расчеты

Управление и экономические расчеты

Телекоммуникации, информационное обслуживание

Использование элементов искусственного интеллекта и распознавание зрительных и звуковых образов

Вычислительные приспособления и устройства от древности до наших дней

Основными этапами развития вычислительной техники являются: Ручной - до 17 века, Механический - с середины 17 века, Электромеханический - с 90-х годов 19 века, Электронный - с 40 годов 20 века.

Ручной период начался на заре человеческой цивилизации.

В любой деятельности человек всегда придумывал и создавал самые разнообразные средства, приспособления и орудия труда с целью расширения своих возможностей и облегчения труда.

С развитием торговли появилась потребность в счете. Много веков назад для осуществления различных подсчетов человек начал использовать сначала собственные пальцы, затем камешки, палочки, узелки и прочее. Но со временем задачи, стоящие перед ним, усложнялись, и стало необходимым находить способы, изобретать приспособления, которые смогли бы ему помочь в решении данных задач.

Одним из первых устройств (V в. до н. э.), облегчавших вычисления, можно считать специальную доску, названную впоследствии абаком (с греч. "счетная доска"). Вычисления на ней проводились перемещением костей или камешков в углублениях досок из бронзы, камня, слоновой кости и пр. В Греции абак существовал уже в V веке до н. э. Одна бороздка соответствовала единицам, другая - десяткам и т. д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующий разряд. Римляне усовершенствовали абак, перейдя от бороздок и камешков к мраморным доскам с выточенными желобками и мраморными шариками. С его помощью можно было совершать простейшие математические операции сложения и вычитания.

Китайская разновидность абака - суаньпань - появилась в VI веке н.э.; Соробан же – это японский абак, происходит от китайского суаньпаня, который был завезен в Японию в XV- XVI веках. XVI в. - Создаются русские счеты с десятичной системой счисления. Они претерпевают с веками значительные изменения, но ими продолжают пользоваться вплоть до 80-х годов 20 века.

В начале XVII века шотландский математик Дж. Непер ввел логарифмы, что оказало революционное влияние на счет. Изобретенная им логарифмическая линейка успешно использовалась еще пятнадцать лет назад, более 360 лет прослужив инженерам. Она, несомненно, является венцом вычислительных инструментов ручного периода автоматизации.

Развитие механики в XVII веке стало предпосылкой создания вычислительных устройств и приборов, использующих механический способ вычислений. Среди механических устройств выделяют суммирующие машины (умеют складывать и вычитать), множительное устройство (умножает и делит), со временем их объединили в одну - арифмометр (умеют выполнять все 4 арифметических действия).

В дневниках гениального итальянца Леонардо да Винчи (1452-1519) уже в наше время был обнаружен ряд рисунков, которые оказались эскизным наброском суммирующей вычислительной машины на зубчатых колесах, способной складывать 13-разрядные десятичные числа. В те далекие от нас годы гениальный ученый был, вероятно, единственным на Земле человеком, который понял необходимость создания устройств для облегчения труда при выполнении вычислений. Однако потребность в этом была настолько малой (точнее, ее не было совсем!), что лишь через сто с лишним лет после смерти Леонардо да Винчи нашелся другой европеец – немецкий ученый Вильгельм Шиккард (1592-1636), не читавший, естественно, дневников великого итальянца, – который предложил свое решение этой задачи. Причиной, побудившей Шиккарда разработать счетную машину для суммирования и умножения шестиразрядных десятичных чисел, было его знакомство с польским астрономом И. Кеплером. Ознакомившись с работой великого астронома, связанной в основном с вычислениями, Шиккард загорелся идеей оказать ему помощь в нелегком труде. В письме на его имя, отправленном в 1623 г., он приводит рисунок машины и рассказывает, как она устроена.

Одним из первых образцов таких механизмов были «считающие часы» немецкого математика Вильгельма Шиккарда. В 1623 году он создал машину, которая стала первым автоматическим калькулятором. Машина Шиккарда умела складывать и вычитать шестизначные числа, оповещая звонком о переполнении. К сожалению, данных о дальнейшей судьбе машины история не сохранила.

Об изобретениях Леонардо да Винчи и Вильгельма Шиккарда стало известно лишь в наше время. Современникам они были неизвестны.

Самой же известной из первых вычислительных машин стала суммирующая машина Блеза Паскаля, который в 1642 г построил модель «Паскалины»- счетной суммирующей машины для восьмизначных чисел. Б.Паскаль начал создавать «Паскалину» в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и был вынужден часто выполнять долгие и утомительные расчёты. И его единственной целью было помочь ему в работе.

В 1673 г. немецкий математик Лейбниц создает первый арифмометр, позволяющий выполнять все четыре арифметических операции. "...Моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию", – писал В. Лейбниц одному из своих друзей. О машине Лейбница было известно в большинстве стран Европы.

Принцип вычислений оказался удачным, в последствие модель неоднократно дорабатывалась в разных странах разными учеными.

И с 1881 г. было организованно серийное производства арифмометров, которые использовались для практических вычислений вплоть до шестидесятых годов XX века.

Самой известной моделью серийного производства был арифмометр Феликс, российского производства, получивший в 1900г. на международной выставке в Париже золотую медаль.

Так же к механическому периоду относят теоретические разработки аналитической машин Бэбиджа, которые не были реализованы из-за отсутствия финансирования. Теоретические разработки относятся к 1920-1971 годам. Аналитическая машина должны была стать первой машиной использующей принцип программного управления и предназначавшейся для вычисления любого алгоритма, ввод-вывод планировался с помощью перфокарт, работать она должна была на паровом двигателе. Аналитическая машина состояла из следующих четырех основных частей: блок хранения исходных, промежуточных и результирующих данных (склад - память); блок обработки данных (мельница - арифметическое устройство); блок управления последовательностью вычислений (устройство управления); блок ввода исходных данных и печати результатов (устройства ввода/вывода), что в дальнейшем послужило прообразом структуры всех современных компьютеров. Одновременно с английским ученым работала леди Ада Лавлейс (дочь английского поэта Джорджа Байрона). Она разработала первые программы для машины, заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени. Графиню Лавлейс считают первым программистом, и в ее честь назван язык программирования АДА. Хотя проект не был реализован, он получил широкую известность и высокую оценку ученых. Чарльз Бебидж на целый век обогнал время.

Продолжение следует…