Как запускают реактор. Ядерный реактор: принцип работы, устройство и схема Ядерный реактор элементы и назначение

: … довольно банально, но тем не менее я так и не нашел инфу в удобоваримой форме — как НАЧИНАЕТ работать атомный реактор. Про принцип и устройство работы всё уже 300 раз разжеванно и понятно, но вот то как получают топливо и из чего и почему оно не столь опасно пока не в реакторе и почему не вступает в реакцию до погружения в реактор! — ведь оно разогревается только внутри, тем не менее перед загрузкой твлы холодные и всё нормально, так что-же служит причиной нагрева элементов не совсем ясно, как на них воздействуют и так далее, желательно не по научному).

Сложно конечно такую тему оформить не «по научному», но попробую. Давайте сначала разберемся, что из себя представляют эти самые ТВЭЛы.

Ядерное топливо представляет собой таблетки черного цвета диаметром около 1 см. и высотой около 1.5 см. В них содержится 2 % двуокиси урана 235, и 98 % урана 238, 236, 239. Во всех случаях при любом количестве ядерного топлива ядерный взрыв развиться не может, т.к.для лавинообразной стремительной реакции деления, характерной для ядерного взрыва требуется концентрация урана 235 более 60%.

Двести таблеток ядерного топлива загружаются в трубку, изготовленную из металла цирконий. Длина этой трубки 3.5м. диаметр 1.35 см. Эта трубка называется ТВЭЛ- тепловыделяющий элемент. 36 ТВЭЛов собираются в кассету (другое название «сборка»).

Устройство твэла реактора РБМК: 1 - заглушка; 2 - таблетки диоксида урана; 3 - оболочка из циркония; 4 - пружина; 5 - втулка; 6 - наконечник.

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер, для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога, ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций, такое повышение обычно составляет сотни градусов Кельвина, в случае же ядерных реакций - это минимум 107 K из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счёт неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются, как продукты экзоэнергетической реакции.

Для управления и защиты ядерного реактора используются регулирующие стержни, которые можно перемещать по всей высоте активной зоны. Стержни изготавливаются из веществ, сильно поглощающих нейтроны – например, из бора или кадмия. При глубоком введении стержней цепная реакция становится невозможной, поскольку нейтроны сильно поглощаются и выводятся из зоны реакции.

Перемещение стержней производится дистанционно с пульта управления. При небольшом перемещении стержней цепной процесс будет либо развиваться, либо затухать. Таким способом регулируется мощность реактора.

Ленинградская АЭС, Реактор РБМК

Начало работы реактора:

В начальный момент времени после первой загрузки топливом, цепная реакция деления в реакторе отсутствует, реактор находится в подкритическом состоянии. Температура теплоносителя значительно меньше рабочей.

Как мы уже тут упоминали, для начала цепной реакции делящийся материал должен образовать критическую массу, - достаточное количество спонтанно расщепляющегося вещества в достаточно небольшом пространстве, условие, при котором число нейтронов, выделяющихся при делении ядер должно быть больше числа поглощенных нейтронов. Это можно сделать, повысив содержание урана-235 (количество загруженных ТВЭЛОВ), либо замедлив скорость нейтронов, чтобы они не пролетали мимо ядер урана-235.

Вывод реактора на мощность осуществляется в несколько этапов. С помощью органов регулирования реактивности реактор переводится в надкритическое состояние Кэф>1 и происходит рост мощности реактора до уровня 1-2 % от номинальной. На этом этапе производится разогрев реактора до рабочих параметров теплоносителя причем скорость разогрева ограничена. В процессе разогрева органы регулирования поддерживают мощность на постоянном уровне. Затем производится пуск циркуляционных насосов и вводится в действие система отвода тепла. После этого мощность реактора можно повышать до любого уровня в интервале от 2 — 100 % номинальной мощности.

При разогреве реактора реактивность меняется, в виду изменения температуры и плотности материалов активной зоны. Иногда при разогреве меняется взаимное положение активной зоны и органов регулирования, которые входят в активную зону или выходят из нее, вызывая эффект реактивности при отсутствии активного перемещения органов регулирования.

Регулирование твердыми, движущимися поглощающими элементами

Для оперативного изменения реактивности в подавляющем большинстве случаев используется твердые подвижные поглотители. В реакторе РБМК управляющие стержни содержат втулки из карбида бора заключенные в трубку из алюминиевого сплава диаметром 50 или 70 мм. Каждый регулирующий стержень помещен в отдельный канал и охлаждается водой контура СУЗ (система управления и защиты) при средней температуре 50 ° С. По своему назначению стержни делятся на стержни АЗ (аварийной зашиты), в РБМК таких стержней 24 штуки. Стержни автоматического регулирования — 12 штук, Стержни локального автоматического регулирования — 12 штук, стержни ручного регулирования -131, и 32 укороченных стержня поглотителя (УСП). Всего имеется 211 стержней. Причем укороченные стержни вводятся в АЗ с низу остальные с верху.

Реактор ВВЭР 1000. 1 - привод СУЗ; 2 - крышка реактора; 3 - корпус реактора; 4 - блок защитных труб (БЗТ); 5 - шахта; 6 - выгородка активной зоны; 7 - топливные сборки (ТВС) и регулирующие стержни;

Выгорающие поглощающие элементы.

Для компенсации избыточной реактивности после загрузки свежего топлива, часто используют выгорающие поглотители. Принцип работы которых состоит в том, что они, подобно топливу, после захвата нейтрона в дальнейшем перестают поглощать нейтроны (выгорают). Причем скорости убыли в результате поглощения нейтронов, ядер поглотителей, меньше или равна скорости убыли, в результате деления, ядер топлива. Если мы загружаем в АЗ реактора топливо рассчитанное на работу в течении года, то очевидно, что количество ядер делящегося топлива в начале работы будет больше чем в конце, и мы должны скомпенсировать избыточную реактивность поместив в АЗ поглотители. Если для этой цели использовать регулирующие стержни, то мы должны постоянно перемещать их, по мере того как количество ядер топлива уменьшается. Использование выгорающих поглотителей позволяет уменьшить использование движущихся стержней. В настоящее время выгорающие поглотители часто помешают непосредственно в топливные таблетки, при их изготовлении.

Жидкостное регулирование реактивности.

Такое регулирование применяется, в частности, при работе реактора типа ВВЭР в теплоноситель вводится борная кислота Н3ВО3, содержащая ядра 10В поглощающие нейтроны. Изменяя концентрацию борной кислоты в тракте теплоносителя мы тем самым изменяем реактивность в АЗ. В начальный период работы реактора когда ядер топлива много, концентрация кислоты максимальна. По мере выгорания топлива концентрация кислоты снижается.

Механизм цепной реакции

Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Исключение составляют подкритические реакторы с внешним источником тепловых нейтронов. Освобождение связанной реактивности по мере её снижения в силу естественных причин обеспечивает поддержание критического состояния реактора в каждый момент его работы. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, одновременно искусственно снижается k0 размножающей среды. Это достигается введением в активную зону веществ-поглотителей нейтронов, которые могут удаляться из активной зоны в последующем. Так же как и в элементах регулирования цепной реакции, вещества-поглотители входят в состав материала стержней того или иного поперечного сечения, перемещающихся по соответствующим каналам в активной зоне. Но если для регулирования достаточно одного-двух или нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Эти стержни называются компенсирующими. Регулирующие и компенсирующие стержни не обязательно представляют собой различные элементы по конструктивному оформлению. Некоторое число компенсирующих стержней может быть стержнями регулирования, однако функции тех и других отличаются. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.

Иногда стержни управления делаются не из материалов-поглотителей, а из делящегося вещества или материала-рассеивателя. В тепловых реакторах - это преимущественно поглотители нейтронов, эффективных же поглотителей быстрых нейтронов нет. Такие поглотители, как кадмий, гафний и другие, сильно поглощают лишь тепловые нейтроны благодаря близости первого резонанса к тепловой области, а за пределами последней ничем не отличаются от других веществ по своим поглощающим свойствам. Исключение составляет бор, сечение поглощения нейтронов которого снижается с энергией значительно медленнее, чем у указанных веществ, по закону l / v. Поэтому бор поглощает быстрые нейтроны хотя и слабо, но несколько лучше других веществ. Материалом-поглотителем в реакторе на быстрых нейтронах может служить только бор, по возможности обогащенный изотопом 10В. Помимо бора в реакторах на быстрых нейтронах для стержней управления применяются и делящиеся материалы. Компенсирующий стержень из делящегося материала выполняет ту же функцию, что и стержень-поглотитель нейтронов: увеличивает реактивность реактора при естественном её снижении. Однако, в отличие от поглотителя, такой стержень в начале работы реактора находится за пределами активной зоны, а затем вводится в активную зону.

Из материалов-рассеивателей в быстрых реакторах употребляется никель, имеющий сечение рассеяния быстрых нейтронов несколько больше сечений других веществ. Стержни-рассеиватели располагаются по периферии активной зоны и их погружение в соответствующий канал вызывает снижение утечек нейтронов из активной зоны и, следовательно, возрастание реактивности. В некоторых специальных случаях целям управления цепной реакцией служат подвижные части отражателей нейтронов, при перемещении изменяющие утечки нейтронов из активной зоны. Регулирующие, компенсирующие и аварийные стержни совместно со всем оборудованием, обеспечивающим их нормальное функционирование, образуют систему управления и защиты реактора (СУЗ).

Аварийная защита:

Аварийная защита ядерного реактора – совокупность устройств, предназначенная для быстрого прекращения цепной ядерной реакции в активной зоне реактора.

Активная аварийная защита автоматически срабатывает при достижении одним из параметров ядерного реактора значения, которое может привести к аварии. В качестве таких параметров могут выступать: температура, давление и расход теплоносителя, уровень и скорость увеличения мощности.

Исполнительными элементами аварийной защиты являются, в большинстве случаев, стержни с веществом, хорошо поглощающим нейтроны (бором или кадмием). Иногда для остановки реактора жидкий поглотитель впрыскивают в контур теплоносителя.

Дополнительно к активной защите, многие современные проекты включают также элементы пассивной защиты. Например, современные варианты реакторов ВВЭР включают «Систему аварийного охлаждения активной зоны» (САОЗ) – специальные баки с борной кислотой, находящиеся над реактором. В случае максимальной проектной аварии (разрыва первого контура охлаждения реактора), содержимое этих баков самотеком оказываются внутри активной зоны реактора и цепная ядерная реакция гасится большим количеством борсодержащего вещества, хорошо поглощающего нейтроны.

Согласно «Правилам ядерной безопасности реакторных установок атомных станций», по крайней мере одна из предусмотренных систем остановки реактора должна выполнять функцию аварийной защиты (АЗ). Аварийная защита должна иметь не менее двух независимых групп рабочих органов. По сигналу АЗ рабочие органы АЗ должны приводиться в действие из любых рабочих или промежуточных положений.

Аппаратура АЗ должна состоять минимум из двух независимых комплектов.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы в диапазоне изменения плотности нейтронного потока от 7% до 120% номинального обеспечивалась защита:

1. По плотности нейтронного потока – не менее чем тремя независимыми каналами;
2. По скорости нарастания плотности нейтронного потока – не менее чем тремя независимыми каналами.

Каждый комплект аппаратуры АЗ должен быть спроектирован таким образом, чтобы во всем диапазоне изменения технологических параметров, установленном в проекте реакторной установки (РУ), обеспечивалась аварийная защита не менее чем тремя независимыми каналами по каждому технологическому параметру, по которому необходимо осуществлять защиту.

Управляющие команды каждого комплекта для исполнительных механизмов АЗ должны передаваться минимум по двум каналам. При выводе из работы одного канала в одном из комплектов аппаратуры АЗ без вывода данного комплекта из работы для этого канала должен автоматически формироваться аварийный сигнал.

Срабатывание аварийной защиты должно происходить как минимум в следующих случаях:

1. При достижении уставки АЗ по плотности нейтронного потока.
2. При достижении уставки АЗ по скорости нарастания плотности нейтронного потока.
3. При исчезновении напряжения в любом не выведенном из работы комплекте аппаратуры АЗ и шинах электропитания СУЗ.
4. При отказе любых двух из трех каналов защиты по плотности нейтронного потока или по скорости нарастания нейтронного потока в любом не выведенном из работы комплекте аппаратуры АЗ.
5. При достижении уставок АЗ технологическими параметрами, по которым необходимо осуществлять защиту.
6. При инициировании срабатывания АЗ от ключа с блочного пункта управления (БПУ) или резервного пункта управления (РПУ).

Может кто то сможет еще менее по научному объяснить кратко как начинает работу энергоблок АЭС? :-)

Вспомните такую тему, как и Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

У ядерных реакторов одна задача: расщепить атомы в результате контролируемой реакции и использовать выделенную энергию, чтобы генерировать электрическую мощность. На протяжении многих лет реакторы рассматривались и как чудо, и как угроза.

Когда первый коммерческий реактор США вошел в строй в Shippingport, штат Пенсильвания, в 1956 году, эта технология была расценена как источник энергии будущего, а некоторые полагали, что реакторы сделают выработку электричества слишком дешевой. Сейчас во всем мире построено 442 атомных реактора, около четверти из этих реакторов находятся в США. Мир пришел в зависимость от ядерных реакторов, вырабатывающих 14 процентов электроэнергии . Футуристы фантазировали даже об атомных автомобилях.

Когда в 1979 году на реакторе Блок 2 на электростанции Three Mile Island в штате Пенсильвания возникла неисправность системы охлаждения и, как следствие, частичное расплавление его радиоактивного топлива, теплые чувства по поводу реакторов радикально изменились. Несмотря на то, что было проведено блокирование разрушенного реактора и не возникло никакого серьезного радиоактивного излучения, многие люди начали рассматривать реакторы как слишком сложные и уязвимые, с потенциально катастрофическими последствиями. Люди также обеспокоились радиоактивными отходами из реакторов. В результате, строительство новых атомных станций в Соединенных Штатах остановилось. Когда более серьезная авария произошла на Чернобыльской АЭС в Советском Союзе в 1986 году, ядерная энергетика казалась обреченной.

Но в начале 2000-х, ядерные реакторы начали возвращаться, благодаря растущей потребности в энергии и уменьшении поставок ископаемого топлива, а также растущей обеспокоенности по поводу изменения климата в результате выбросов двуокиси углерода

Но в марте 2011 года случился еще один кризис — на этот раз от землетрясения сильно пострадала Фукусима 1 — атомная электростанция в Японии.

Использование ядерной реакции

Попросту говоря, в ядерном реакторе расщепляются атомы и высвобождают энергию, которая держит их части вместе.

Если вы подзабыли физику средней школы, мы напомним вам, как ядерное деление работает. Атомы похожи на крошечные солнечные системы, с ядром, вроде Солнца , и электронами, как планетами на орбите вокруг него. Ядро состоит из частиц, называемых протонами и нейтронами, которые связаны друг с другом. Силу, которая связывает элементы ядра — трудно даже представить. Она во много миллиардов раз сильнее, чем сила земного тяготения. Несмотря на эту огромную силу, можно расщепить ядро — стреляя по нему нейтронами. Когда это будет сделано, выделится много энергии. Когда атомы распадаются, их частицы врезаются в близлежащие атомы, расщепляя и их, а те, в свою очередь следующие, следующие и следующие. Возникает, так называемая, цепная реакция .

Уран, элемент с большими атомами, идеально подходит для процесса расщепления, потому, что сила, связывающая частицы его ядра, является относительно слабой по сравнению с другими элементами. Ядерные реакторы используют определенный изотоп, называемый У ран- 235 . Уран-235 является редким в природе, руда из урановых рудников содержит лишь около 0,7% Урана-235. Вот почему реакторы используют обогащенный У ран , который создается путем выделения и концентрирования Урана-235 посредством процесса диффузии газа.

Процесс цепной реакции можно создать в атомной бомбе, подобной тем, что были сброшены на японские города Хиросиму и Нагасаки во время Второй мировой войны. Но в ядерном реакторе цепная реакция контролируется вставкой управляющих стержней, изготовленных из материалов, таких, как кадмий, гафний или бор, которые поглощают часть нейтронов. Это по-прежнему позволяет процессу деления выделять достаточно энергии, чтобы нагреть воду до температуры около 270 градусов Цельсия и превратить ее в пар, который используется для вращения турбин электростанции и генерирования электричества. В принципе, в этом случае контролируемая ядерная бомба работает вместо угля, создавая электроэнергию, за исключением того, что энергия для вскипания воды происходит от расщепления атомов, вместо сжигания углерода.

Компоненты ядерных реакторов

Есть несколько различных типов ядерных реакторов, но все они имеют некоторые общие характеристики. Все они имеют запас радиоактивных топливных гранул — обычно оксида урана, которые расположены в трубах, чтобы сформировать топливные стержни в активной зон е реактора .

Реактор также имеет ранее упомянутые управляющи е стержн и — из поглощающего нейтроны материала, такого как кадмий, гафний или бор, которые вставляются для контроля или остановки реакции.

Реактор также имеет модератор , вещество, которое замедляет нейтроны и помогает контролировать процесс деления. Большинство реакторов в Соединенных Штатах используют обычную воду, но реакторы в других странах иногда используют графит, или тяжел ую вод у , в которой водород заменен дейтерием, изотопом водорода с одним протоном и одним нейтроном. Еще одной важной частью системы является охлаждающ ая жидкост ь , как правило, обычная вода, которая поглощает и передает тепло от реактора для создания пара для вращения турбины и охлаждает зону реактора так, чтобы он не достиг температуры, при которой уран расплавится (около 3815 градусов по Цельсию).

Наконец, реактор заключен в оболочк у , большую, тяжелую конструкцию, толщиной обычно несколько метров из стали и бетона, которая держит радиоактивные газы и жидкости внутри, где они не могут никому навредить.

Есть целый ряд различных конструкций реакторов в использовании, но один из самых распространенных — водо-водяной энергетический реактор (ВВЭР) . В таком реакторе, вода нагнетается в контакт с сердечником, а затем остается там под таким давлением, что не может превратиться в пар. Эта вода затем в парогенераторе вступает в контакт с водой, поданной без давления, которая и превращается в пар, вращающий турбины. Есть также конструкция реактора большой мощности канального типа (РБМК) с одним водяным контуром и реактор на быстрых нейтронах с двумя натриевыми и одним водяным контуром.

Насколько безопасен ядерный реактор?

Ответить на этот вопрос довольно сложно и это зависит от того, кого вы спросите и как вы понимаете «в безопасности». Вас беспокоит излучение или радиоактивные отходы, образующиеся в реакторах? Или вы больше беспокоитесь о возможности катастрофического несчастного случая? Какую степень риска вы считаете приемлемым компромиссом для выгоды ядерной энергетики? И в какой степени вы доверяете правительству и атомной энергетике?

«Радиация» является веским аргументом, в основном, потому, что мы все знаем, что большие дозы радиации, например, от взрыва ядерной бомбы, могут убить многие тысячи людей.

Сторонники ядерной энергетики, однако, отмечают, что все мы регулярно подвергаются облучению из различных источников, в том числе космическими лучами и естественной радиацией, испускаемой Землей . Среднегодовая доза облучения составляет около 6,2 миллизивертов (мЗв), половина из него из природных источников, а половина из искусственных источников, начиная от рентгена грудной клетки, детекторов дыма и светящихся часовых циферблатов. Сколько мы получаем радиации от ядерных реакторов? Лишь незначительная часть процента от нашего типичного годового облучения — 0,0001 мЗв.

В то время как все атомные станции неизбежно допускают утечку небольшого количества радиации, комиссии-регуляторы держат операторов АЭС в жестких требованиях. Они не могут подвергать людей, живущих вокруг станции, более, чем 1 мЗв излучения в год, а рабочие на заводе имеют порог 50 мЗв в год. Это может показаться много, но, по словам Комиссии по ядерному регулированию, нет никаких медицинских доказательств того, что годовые дозы излучения ниже 100 мЗв создают какие-либо риски для здоровья человека.

Но важно отметить, что не все согласны с такой благодушной оценкой радиационных рисков. Например, организация «Врачи за социальную ответственность», давний критик атомной промышленности, изучали детей, живущих вокруг немецких АЭС. Исследование показало, что люди, живущие в пределах 5 км от станций, имели двойной риск заражения лейкозом в сравнении с теми, кто живет дальше от АЭС.

Ядерные отходы реактора

Ядерная энергетика рекламируется ее сторонниками, как «чистая» энергия, потому, что реактор не выбрасывает большие объемы парниковых газов в атмосферу, в сравнении с угольными электростанциями. Но критики указывают на другую экологическую проблему — утилизацию ядерных отходов. Некоторые из отходов отработанного топлива из реакторов, по-прежнему выделяют радиоактивность. Другой ненужный материал, который должен быть сохранен, является радиоактивными отходами высокого уровня , жидким остатком от переработки отработанного топлива, в котором частично остался уран. Прямо сейчас большинство этих отходов хранится локально на атомных электростанциях в прудах воды, которые поглощают часть оставшегося тепла, произведенного отработанным топливом и помогают оградить рабочих от радиоактивного облучения

Одна из проблем, с отработавшим ядерным топливом в том, что оно было изменено в процессе деления.Когда большие атомы урана расщепляются, они создают побочные продукты — радиоактивные изотопы нескольких легких элементов, таких как Цезий-137 и Стронций-90, называемые продукты деления . Они горячие и очень радиоактивные, но в конце концов, за период в 30 лет, они распадаются на менее опасные формы. Этот период для них называется п ериод ом полураспада . Для других радиоактивных элементов период полураспада будет разным. Кроме того, некоторые атомы урана также захватывают нейтроны, образуя более тяжелые элементы, такие как Плутоний. Эти трансурановые элементы не создают столько тепла или проникающего излучения как продукты деления, но они требуют намного дольше времени, чтобы распадаться. Плутоний-239, например, имеет период полураспада 24000 лет.

Эти радиоактивны е отход ы высокого уровня из реакторов являются опасными для человека и других форм жизни потому, что они могут выделять огромную, смертельную дозу радиации даже от короткой экспозиции. Через десять лет после удаления остатков топлива из реактора, например, они испускают в 200 раз больше радиоактивности в час, чем это требуется, чтобы убить человека. И если отходы оказываются в грунтовых водах или реках, они могут попадать в пищевую цепь и поставить под угрозу большое количество людей.

Поскольку отходы так опасны, многие люди находятся в сложном положении. 60000 тонн отходов находится на атомных станциях, близких к крупным городам. Но найти безопасное место, чтобы хранить отходы — очень нелегко.

Что может пойти не так с ядерным реактором?

С государственными регуляторами, оглядываясь на свой опыт, инженеры потратили много времени на протяжении многих лет проектируя реакторы для оптимальной безопасности. Просто так они не ломаются, работают должным образом и имеют резервные меры безопасности, если что-то происходит не по плану. В результате, год за годом, атомные станции, кажутся довольно безопасными по сравнению, скажем, с воздушным транспортом , который регулярно убивает от 500 до 1100 человек в год во всем мире.

Тем не менее, ядерные реакторы настигают крупные поломки. По международной шкале ядерных событий, в которой несчастные случаи с реакторами оцениваются от 1 до 7, было пять аварий с 1957 года, которые оценили от 5 до 7.

Худшим кошмаром является поломка системы охлаждения, что приводит к перегреву топлива. Топливо превращается в жидкость, а затем прожигает защитную оболочку, извергая радиоактивное излучение. В 1979 году Блок 2 на АЭС Three Mile Island (США) был на грани этого сценария. К счастью, хорошо продуманная система сдерживания была достаточно сильна, чтобы остановить радиацию от выхода.

СССР повезло меньше. Тяжелая ядерная авария случилась в апреле 1986 года на 4-м энергоблоке на Чернобыльской АЭС. Это было вызвано сочетанием системных поломок, конструктивных недостатков и плохо обученным персоналом. Во время обычной проверки, реакция вдруг усилилась, а контрольные стержни заклинило, предотвращая аварийное отключение. Внезапное накопление пара вызвало два тепловых взрыва, выбрасывая графитовый замедлитель реактора в воздух. В отсутствии чего-либо для охлаждения топливных стержней реактора, начался их перегрев и полное разрушение в результате которого топливо приняло жидкий вид. Погибло много работников станции и ликвидаторов аварии. Большое количество излучения распространилось на площади 323 749 квадратных километров. Количество смертей, вызванных радиацией, до сих пор неясно, но Всемирная организация здравоохранения утверждает, что это, возможно, вызвало 9000 смертей от рака.

Создатели ядерных реакторов дают гарантии, основанные на вероятностной оценк е , в которой они пытаются сбалансировать потенциальный вред от случая с вероятностью, с которой он на самом деле происходит. Но некоторые критики говорят, что они должны готовиться, вместо этого, для редких, самых неожиданных, но очень опасных событий. Показательный пример — авария в марте 2011 года на атомной станции Фукусима 1 в Японии. Станция, по сообщениям, была разработана, чтобы выдерживать сильное землетрясение, но не такое катастрофическое, как землетрясение в 9,0 баллов, которое подняло 14-метровую волну цунами над дамбами, призванными противостоять 5,4-метровой волне. Натиск цунами уничтожил резервные дизель генераторы, которые предназначались для питания системы охлаждения шести реакторов АЭС, в случае отключения электричества.Таким образом, даже после того, как регулирующие стержни реакторов Фукусима прекратили реакцию деления, все еще ​​горячее топливо позволило температуре опасно подняться внутри разрушенных реакторов.

Японские чиновники прибегли к крайней мере — затоплению реакторов огромным количеством морской воды с добавкой борной кислоты, что смогло предотвратить катастрофу, но разрушило реакторное оборудование. В конце концов, с помощью пожарных машин и барж, японцы оказались в состоянии перекачивать пресную воду в реакторы. Но к тому времени мониторинг уже показал тревожные уровни радиации в окружающей земле и воде. В одной деревне в 40 км от этой АЭС, радиоактивный элемент Цезий-137, оказался на уровнях гораздо более высоких, чем после Чернобыльской катастрофы, что вызвало сомнение о возможности проживания людей в этой зоне.

Ядерный (атомный) реактор
Nuclear reactor

Ядерный (атомный) реактор – установка, в которой осуществляется самоподдерживающаяся управляемая цепная ядерная реакция деления. Ядерные реакторы используются в атомной энергетике и в исследовательских целях. Основная часть реактора – его активная зона, где происходит деление ядер и выделяется ядерная энергия. Активная зона, имеющая обычно форму цилиндра объёмом от долей литра до многих кубометров, содержит делящееся вещество (ядерное топливо) в количестве, превышающем критическую массу. Ядерное топливо (уран, плутоний) размещается, как правило, внутри тепловыделяющих элементов (ТВЭЛов), количество которых в активной зоне может достигать десятков тысяч. ТВЭЛы сгруппированы в пакеты по несколько десятков или сотен штук. Активная зона в большинстве случаев представляет собой совокупность ТВЭЛов погружённых в замедляющую среду (замедлитель) – вещество, за счёт упругих соударений с атомами которого энергия нейтронов, вызывающих и сопровождающих деление, снижается до энергий теплового равновесия со средой. Такие “тепловые” нейтроны обладают повышенной способностью вызывать деление. В качестве замедлителя обычно используется вода (в том числе и тяжёлая, D 2 О) и графит. Активную зону реактора окружает отражатель из материалов, способных хорошо рассеивать нейтроны. Этот слой возвращает вылетающие из активной зоны нейтроны обратно в эту зону, повышая скорость протекания цепной реакции и снижая критическую массу. Вокруг отражателя размещают радиационную биологическую защиту из бетона и других материалов для снижения излучения за пределами реактора до допустимого уровня.
В активной зоне в результате деления освобождается в виде тепла огромная энергия. Она выводится из активной зоны с помощью газа, воды или другого вещества (теплоносителя), которое постоянно прокачивается через активную зону, омывая ТВЭЛы. Это тепло может быть использовано для создания горячего пара, вращающего турбину электростанции.
Для управления скоростью протекания цепной реакции деления применяют регулирующие стержни из материалов, сильно поглощающих нейтроны. Введение их в активную зону снижает скорость цепной реакции и при необходимости полностью останавливает её, несмотря на то, что масса ядерного топлива превышает критическую. По мере извлечения регулирующих стержней из активной зоны поглощение нейтронов уменьшается, и цепная реакция может быть доведена до стадии самоподдерживающейся.
Первый реактор был пущен в США в 1942 г. В Европе первый реактор был пущен в 1946 г. в СССР.

Сегодня мы совершим небольшое путешествие в мир ядерной физики. Темой нашей экскурсии будет ядерный реактор. Вы узнаете, как он устроен, какие физические принципы лежат в основе его работы и где применяют это устройство.

Зарождение атомной энергетики

Первый в мире ядерный реактор был создан в 1942 году в США экспериментальной группой физиков под руководством лауреата нобелевской премии Энрико Ферми. Тогда же ими была осуществлена самоподдерживающаяся реакция расщепления урана. Атомный джин был выпущен на свободу.

Первый советский ядерный реактор был запущен в 1946 году, а спустя 8 лет дала ток первая в мире АЭС в городе Обнинске. Главным научным руководителем работ в атомной энергетике СССР был выдающийся физик Игорь Васильевич Курчатов.

С тех сменилось несколько поколений ядерных реакторов, но основные элементы его конструкции сохранились неизменными.

Анатомия атомного реактора

Эта ядерная установка представляет собой толстостенный стальной бак с цилиндрической ёмкостью от нескольких кубических сантиметров до многих кубометров.

Внутри этого цилиндра размещается святая святых - активная зона реактора. Именно здесь происходит цепная реакция деления ядерного топлива.

Рассмотрим, как происходит этот процесс.

Ядра тяжелых элементов, в частности Уран-235 (U-235), под действием небольшого энергетического толчка способны разваливаться на 2 осколка приблизительно равной массы. Возбудителем этого процесса является нейтрон.

Осколки чаще всего представляют собой ядра бария и криптона. Каждый из них несет положительный заряд, поэтому силы кулоновского отталкивания вынуждают их разлетаться в разные стороны со скоростью около 1/30 световой скорости. Эти осколки являются носителями колоссальной кинетической энергии.

Для практического использования энергии, необходимо, чтобы её выделение носило самоподдерживающийся характер. Цепная реакция, о которой идёт речь, тем интересна, что каждый акт деления сопровождается испусканием новых нейтронов. На один начальный нейтрон в среднем возникает 2-3 новых нейтрона. Количество делящихся ядер урана лавинообразно нарастает, вызывая выделение огромной энергии. Если этот процесс не контролировать - произойдет ядерный взрыв. Он имеет место в .

Чтобы регулировать число нейтронов в систему вводятся материалы, которые поглощают нейтроны, обеспечивая плавное выделение энергии. В качестве поглотителей нейтронов используют кадмий или бор.

Как же обуздать и использовать громадную кинетическую энергию осколков? Для этих целей служит теплоноситель, т.е. специальная среда, двигаясь в которой осколки тормозятся и нагревают её до чрезвычайно высоких температур. Такой средой может являться обычная или тяжелая вода, жидкие металлы (натрий), а также некоторый газы. Чтобы не вызвать переход теплоносителя в парообразное состояние, в активной зоне поддерживается высокое давление (до 160 атм). По этой причине стенки реактора изготавливают из десятисантиметровой стали специальных сортов.

Если нейтроны вылетят за пределы ядерного топлива, то цепная реакция может прерваться. Поэтому существует критическая масса делящегося вещества, т.е. его минимальная масса, при которой, будет поддерживаться цепная реакция. Она зависит от различных параметров, в том числе и от наличия отражателя, окружающего активную зону реактора. Он служит для предотвращения утечки нейтронов в окружающую среду. Наиболее распространенным материалом для этого конструктивного элемента является графит.

Процессы, происходящие в реакторе, сопровождаются выделением самого опасного вида радиации – гамма излучения. Чтобы минимизировать эту опасность, в нём предусмотрена противорадиационная защита.

Как работает атомный реактор

В активной зоне реактора размещают ядерное горючее, именуемое ТВЭЛами. Они представляют собой таблетки, сформированные из расщепляемого материала и уложенные в тонкие трубки длиной около 3,5 м и диаметром в 10 мм.

Сотни однотипных топливных сборок размещают в активную зону, они и становятся источниками тепловой энергии, выделяемой в процессе цепной реакции. Теплоноситель, омывающий ТВЭЛы, образует первый контур реактора.

Нагретый до высоких параметров, он перекачивается насосом в парогенератор, где передает свою энергию воде второго контура, превращая её в пар. Полученный пар вращает турбогенератор. Вырабатываемая этим агрегатом электроэнергия передается потребителю. А отработанный пар, охлажденный водой из пруда–охладителя, в виде конденсата, возвращается в парогенератор. Цикл замыкается.

Такая двухконтурная схема работа ядерной установки исключает проникновение радиации, сопровождающей процессы, происходящие в активной зоне, за его пределы.

Итак, в реакторе происходит цепочка превращений энергии: ядерная энергия расщепляемого материала → в кинетическую энергию осколков → тепловую энергию теплоносителя → кинетическую энергию турбины → и в электрическую энергию в генераторе.

Неизбежные потери энергии приводят к тому, что КПД атомных электростанций сравнительно не велик 33-34%.

Кроме выработки электрической энергии на АЭС ядерные реакторы используют для получения различных радиоактивных изотопов, для исследований во многих областях промышленности, для изучения допустимых параметров промышленных реакторов. Всё более широкое распространение получают транспортные реакторы, обеспечивающие энергией двигатели транспортных средств.

Типы ядерных реакторов

Как правило, ядерные реакторы работают на уране U-235. Однако его содержание в природном материале чрезвычайно мало, всего 0,7%. Основную же массу природного урана составляет изотоп U-238. Цепную реакцию в U-235 могут вызвать лишь медленные нейтроны, а изотоп U-238 расщепляется только быстрыми нейтронами. В результате же расщепления ядра рождаются как медленные, так и быстрые нейтроны. Быстрые нейтроны, испытывая торможение в теплоносителе (воде), становятся медленным. Но количество изотопа U-235 в природном уране столь мало, что приходится прибегать к его обогащению, доводя его концентрацию до 3-5%. Процесс этот весьма дорогой и экономически невыгоден. Кроме того время исчерпания природных ресурсов этого изотопа оценивается лишь 100-120 годами.

Поэтому в атомной промышленности происходит постепенный переход на реакторы, работающие на быстрых нейтронах.

Основное их отличие - в качестве теплоносителя используют жидкие металлы, которые не замедляют нейтроны, а в роли ядерного горючего используют U-238. Ядра этого изотопа через цепочку ядерных превращений переходят в Плутоний-239, который подвержен цепной реакции так же как и U-235. Т.е имеет место воспроизведение ядерного горючего, причём в количестве, превышающем его расход.

По оценке специалистов запасов изотопа Урана-238 должно хватить на 3000 лет. Этого времени вполне достаточно, чтобы у человечества хватило времени для разработки иных технологий.

Проблемы использования ядерной энергетики

Наряду с очевидными преимуществами ядерной энергетики, нельзя недооценивать масштаб проблем, связанных с эксплуатацией ядерных объектов.

Первая из них - это утилизация радиоактивных отходов и демонтированного оборудования атомной энергетики. Эти элементы обладают активным радиационным фоном, который сохраняется на протяжении длительного периода. Для утилизации этих отходов используют специальные свинцовые контейнеры. Их предполагается хоронить в районах вечной мерзлоты на глубине до 600 метров. Поэтому постоянно ведутся работы по поиску способа переработки радиоактивных отходов, что должно решить проблему утилизации и способствовать сохранению экологии нашей планеты.

Второй не менее тяжелой проблемой является обеспечение безопасности в процессе эксплуатации АЭС. Крупные аварии, подобные Чернобыльской, способны унести множество человеческих жизней и вывести из использования огромные территории.

Авария на японской АЭС «Фукусима-1» лишь подтвердила потенциальную опасность, которая проявляется при возникновении внештатной ситуации на ядерных объектах.

Однако возможности ядерной энергетики столь велики, что экологические проблемы уходят на второй план.

На сегодняшний день у человечества нет иного пути утоления всё нарастающего энергетического голода. Основой ядерной энергетики будущего, вероятно, станут «быстрые» реакторы с функцией воспроизводства ядерного топлива.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Значение атомной энергетики в современном мире

Атомная энергетика за последние несколько десятилетий сделала огромный шаг вперед, став одним из важнейших источников электроэнергии для многих стран. В то же время следует помнить, что за развитием данной отрасли народного хозяйства стоят огромные усилия десятков тысяч ученых, инженеров и простых рабочих, делающих все для того, чтобы «мирный атом» не превратился в реальную угрозу для миллионов людей. Настоящим стержнем любой атомной электростанции является ядерный реактор.

История создания ядерного реактора

Первое подобное устройство было построено в самый разгар второй мировой войны в США известным ученым и инженером Э. Ферми. Из-за своего необычного вида, напоминавшего стопку сложенных друг на друга графитовых блоков, этот ядерный реактор получил название «Чикагская стопка». Стоит отметить, что работало данное устройство на уране, который помещался как раз между блоками.

Создание ядерного реактора в Советском Союзе

В нашей стране ядерной тематике также уделяли повышенное внимание. Несмотря на то, что основные усилия ученых были сконцентрированы на военном применении атома, они активно использовали полученные результаты и в мирных целях. Первый ядерный реактор под кодовым обозначением Ф-1 был построен группой ученых под руководством знаменитого физика И. Курчатова в конце декабря 1946 года. Значительным его недостатком было отсутствие какой бы то ни было системы охлаждения, поэтому мощность выделяемой им энергии была крайне незначительна. В то же время советские исследователи довели до конца начатые ими работы, результатом чего стало открытие спустя всего восемь лет первой в мире электростанции на ядерном топливе в городе Обнинске.

Принцип действия реактора

Ядерный реактор представляет собой крайне сложное и опасное техническое устройство. Его принцип действия основан на том, что при распаде урана происходит выброс нескольких нейтронов, которые, в свою очередь, выбивают элементарные частицы из соседних атомов урана. В результате этой цепной реакции выделяется значительное количество энергии в виде тепла и гамма-лучей. В то же время следует учитывать тот факт, что если эту реакцию никак не контролировать, то деление атомов урана в максимально короткие сроки может привести к мощному взрыву с нежелательными последствиями.

Для того чтобы реакция протекала в строго очерченных рамках, огромное значение имеет устройство ядерного реактора. В настоящее время каждое подобное сооружение представляет собой своеобразный котел, через который протекает теплоноситель. В этом качестве обычно используется вода, однако существуют АЭС, в которых применяются жидкий графит или тяжелая вода. Современный ядерный реактор невозможно представить себе без сотен специальных кассет шестигранной формы. В них находятся тепловыделяющие элементы, по каналам которых и протекают теплоносители. Данная кассета покрыта специальным слоем, который способен отражать нейтроны и замедлять тем самым цепную реакцию

Ядерный реактор и его защита

Он имеет несколько уровней защиты. Помимо собственно корпуса, сверху его покрывает специальная теплоизоляция и биологическая защита. С инженерной точки зрения данное сооружение представляет собой мощный железобетонный бункер, двери в который закрываются максимально герметично.